Сети с изолированной нейтралью

Сети с изолированной нейтралью

Электрические сети — это сложные системы. Схемы подключения генераторов и трансформаторов предполагает подключение глухозаземленной и изолированной нетрали.  В нашей энергосистеме в основном используется система с глухозаземленной нетралью. Однако, существует оборудование, которое должно работать в условиях где применяется трехпроводная сеть с изолированной нейтралью.

Это передвижные установки, оборудование торфоразработок, при добыче калийных удобрений и угольных шахтах, то есть оборудование, работающее на напряжение 380-660 В и 3-35 Кв.  Питающий кабель передвижных установок выполняется четырехпроводным кабелем. Отличие одного вида заземления от другого заключается в том, что общая точка вторичной обмотки трансформатора подключается непосредственно в трансформаторной подстанции к заземлителю.

Такая система с изолированной нейтралью получается при подключении вторичных обмоток трансформатора треугольником. В этом случае средней точки просто не существует. Это используется, когда по условия безопасности не допускают аварийное обесточивание при коротком замыкании на землю. Такие системы получили обозначение IT.

Что является определением изолированной нейтрали

В правилах эксплуатации электроустановок (ПЭУ)существует определение, что собой представляет схема с изолированной нейтралью. Рассмотрим, чем называют IT схемой. Это система, в которой нулевой провод генератора или трансформатора не подключается к заземлителю. Он может быть подключен к контуру заземления путем соединения приборов сигнализации, средств измерения, защиты или аналогичных приборов к нулю.  Все эти устройства должны обладать большим сопротивлением.

Схема с изолированной нейтралью

Систему с изолированной нейтралью можно представить трехфазной сетью, обмотка трансформатора, в которой соединена треугольником, но может быть и звездой. А от линии отходят резисторы, подключенные к заземлению и параллельно сопротивлению стоят конденсаторы. Через которые в кабельной или воздушной линии протекают токи утечки, их можно представить двумя составляющими. Одна из которых активная, а вторая реактивная.

Так как сопротивление не поврежденной изоляции имеет величину около мегаома. При таком сопротивлении ток утечки очень маленький и рассчитывается по закону Ома. I=U/R, а при величине сопротивления 0,5 Мом и напряжении 220 В, составляет 0,44 Ма.  Реактивную составляющую представляют в виде конденсатора. Одной обкладкой служит провод линии, а второй земля.

Когда имеется исправная трехфазная сети с изолированной нейтралью нагрузка между фазами распределяется равномерно. При возникновении пробоя одной фазы на землю, т. е. возникают однофазные замыкания на землю в сетях с изолированной нейтралью.

В этом случае возникает аварийный ток однофазного замыкания. Чаще всего замыкание происходит на корпус электрического потребителя. В качестве последнего могут выступать электродвигатели или металлические конструкции.

Если они не заземлены, то на корпусе прибора возникает фазное напряжение или близкое к нему. Прикосновение человека к корпусу будет равносильно прикосновению к фазе. Что смертельно опасно.
Когда возникает однофазное КЗ в сети с изолированной нейтралью, ток замыкания небольшой, его значение составляет миллиамперы. При таких токах невозможно установить защитные устройства.

Поэтому для обеспечения отключения используются приборы, которые автоматически контролируют состояние изоляции. Такие системы устанавливают, когда необходима защита от замыкания на землю в сетях с изолированной нейтралью.

Достоинства

Какие же существуют достоинства и недостатки сети с изолированной нейтралью? К основным достоинствам следует отнести то, что нет необходимости оперативного отключения питающего напряжения при возникновении короткого замыкания одной фазы на землю.

Недостатки

Это считается аварийным режимом, и он не предполагает длительной работы оборудования. Такой режим имеет следующие недостатки:

  • Обнаружить неисправный участок довольно непросто;
  • Изоляция электроприборов должна быть рассчитана на пробой от линейного напряжения;
  • При продолжительном замыкании увеличивается вероятность поражения обслуживающего персонала электричеством;
  • Вследствие постоянного воздействия дуговых перенапряжений и постоянного накопления дефектов, снижается срок службы изоляции;
  • Из-за появления дуговых перенапряжений возникают повреждения изоляции в разных местах;
  • Однофазное замыкание на землю в сетях с изолированной нейтралью затрудняет работу релейной защиты;
  • Возможное появление дуги малых токов в месте однофазного замыкания на землю.

Большое количество недостатков существенно снижает применение такой схемы в сетях до 1 000 В. Более широкое распространение такая система получила в высоковольтных сетях.

Что такое и чем отличается изолированная нейтраль в сетях с напряжением выше 1 000В

В сетях среднего напряжения (6 — 10 КВ) изолированная нейтраль трансформатора отсутствует, так как обмотки трансформатора соединены треугольником. При соединении обмоток звездой появляется возможность в организации защиты компенсации тока однофазного замыкания на землю в высоковольтной сети с изолированной нейтралью.

Для компенсации реактивных токов короткого замыкания применяют дугогасящие реакторы в случае:

  1. Линии напряжением 3-6 КВ и током свыше 30А;
  2. Напряжение сети 10 КВ и ток больше 10А;
  3. Ток, превышающий 15 А и напряжения 15-20 КВ;
  4. Воздушная линия электропередач напряжением 3 – 20 КВ и током, превышающим 10 А;
  5. Кабельные и ЛЭП напряжением 35 КВ;
  6. При напряжении на генераторе 6-20 КВ и токе на землю 5А в схеме «генератор – трансформатор».

Трехпроводная трехфазная система с изолированной нейтралью допускает производить корректировку тока КЗ, что осуществляется подключением нейтрали к заземлению при помощи высокоомного сопротивления.

В нашем случае изолированная нейтраль используется в сетях:

  • Применяется в двухфазных сетях постоянного тока;
  • Трехфазные сети переменного тока до 1 000 кВ;
  • Трехфазные сети 6 – 35 кВ при допустимом токе короткого замыкания;
  • Сети 0,4 КВ, в которых применяются устройства защиты в виде разделяющих трансформаторов.