Электродвигатель постоянного тока
Электродвигатель постоянного тока – это первая из изобретенных электрических машин, которая преобразует энергию постоянного магнитного поля во вращательное движение. Они обладают большим КПД, чем асинхронные двигатели переменного тока, менее чувствительны к перегрузкам и легко управляются – реверсируюся, ускоряются, замедляются. А возможность уменьшить их размеры до буквально микроскопических предопределило их широкое распространение.
Содержимое
Как работает
Принцип работы электродвигателя, питающегося постоянным током, основан на принципе отталкивания одноименных полюсов магнита. Если свернутый в кольцо проводник подключить к источнику постоянного тока и поместить его между полюсами постоянного магнита, то он повернется на один оборот. Так, чтобы их одноименные полюса совпали.
Этому феномену дал объяснение и математическое обоснование французский физик Андре-Мари Ампер. Вкратце он объясняется правилом левой руки: если открытую ладонь обратить к отрицательному полюсу магнита, так, чтобы четыре пальца показывали направление движения тока по проводнику, то большой палец укажет направление, в котором его вытолкнет магнитное поле.
Чтобы движение продолжилось, в момент совпадения полюсов должно произойти изменение их знаков. Для этого используется до гениальности простое устройство – коллектор. Он состоит из изолированных друг от друга пластин, закрепленных на валу электродвигателя. Концы кольца проводника, образующего якорную обмотку, подключены к нему неподвижно. А питающее напряжение – посредством скользящих контактов, которые изначально делали из пучка тонких проводников, поэтому их назвали щетками. В момент поворота рамки с током происходит смена полярности, и она продолжает движение, отталкиваясь от неподвижного полюса магнита. Вот зачем нужны щетки в электродвигателе постоянного тока и почему его второе название «коллекторный двигатель».
Если якорная обмотка состоит из одной рамки, то она не сможет начать вращаться, если находится на магнитной нейтрали – перпендикулярно линии электромагнитного поля. Для запуска двигателя придется приложить усилие к его валу. Для ликвидации этого эффекта используется две якорные обмотки, но общераспространенным правилом является применение минимум трех.
Итак, конструкция любого двигателя постоянного тока состоит из трех элементов:
- Неподвижного магнита на статоре.
- Ротора с тремя или большим числом обмоток.
- Щеточного узла, к которому подводится питающее напряжение.
Статорный магнит может быть выполнен как из ферромагнетика, так и в виде нескольких катушек, подключенных к тому же источнику электричества, что и щеточный узел. Тогда он называется обмоткой возбуждения. Для плавности хода на статоре устраивается как минимум четыре соленоида, образующих два электромагнита.
Скользящие проволочные контакты на коллекторе сначала заменили щетки угольные, а потом более прочные, сделанные из электротехнического графита. Количество коллекторных пластин зависит от способа укладки якорных обмоток, который может быть петлевым, волновым или секционным. Однако оно ограничивается диаметром коллектора и физической толщиной щетки – одновременно она не должна перекрывать более двух пластин. В противном случае уменьшается число обмоток, участвующих в коммутации – переключении полюсов, что ведет к снижению вращающего момента двигателя.
Схемы подключения и способы управления
Существует три схемы подключения двигателя постоянного тока:
- Обмотка возбуждения включена параллельно якорной. Обеспечивается высокая стабильность частоты вращения.
- Обмотка возбуждения включена последовательно с якорной. Способ позволяет регулировать вращающий момент во время пуска и получать плавную скоростную характеристику. Поэтому он используется для включения тяговых электродвигателей на транспорте.
- Обмотка возбуждения делится на две – одна включена параллельно с якорной, другая последовательно с ней.
Частота вращения двигателя постоянного тока с независимой (параллельной обмоткой) вычисляется по формуле: N = (U – Iя . Rя)/(kc . Ф). Где:
- U – величина питающего напряжения.
- Iя и Rя – ток в цепи якоря и ее сопротивление.
- kc – коэффициент качества магнитной системы.
- Ф – сила магнитного потока.
Изменить ее можно тремя способами:
- Увеличить или уменьшить величину питающего напряжения. Возможно как ускорение, так и замедление двигателя. Регулировка количества оборотов осуществляется плавно.
- Изменить сопротивление цепи якоря. Регулировка ведется дискретно, в сторону уменьшения, но не более чем до половины номинальных оборотов. Способ связан с большими энергетическими потерями.
- Изменить сопротивление цепи обмотки возбуждения. Это приводит к изменению силы магнитного потока. Чем меньше ток, тем он слабее, а частота вращения выше. Теоретически возможно торможение, но на практике, из-за насыщения магнитной системы, увеличение силы тока непропорционально велико по отношению к величине приращения силы магнитного потока. Это может привести к аварии. Однако и чрезмерное ослабление тока в обмотке возбуждения вредно – машина пойдет вразнос.
Реверсирование осуществляется изменением полярности напряжения, подаваемого на якорь.
Коллекторный двигатель переменного тока
Материал и способ исполнения обмоток коллекторного двигателя аналогичен тем, которые используются в асинхронных машинах. Поэтому его подключение к переменному току не вызывает аварии. Чтобы вращение продолжалось в одну сторону, обмотки якоря и статора включаются последовательно, тогда смена полярности полюсов магнитов происходит одновременно.
Такая конструкция широко используется в ручном инструменте, подключаемом к однофазной сети 220 вольт. Она обладает рядом преимуществ перед асинхронным двигателем:
- Нет необходимости создавать вращающееся магнитное поле, подключение в сеть происходит напрямую, без фазосдвигающих устройств.
- Поскольку магнитные поля ротора и статора вращаются синхронно, момент на валу двигателя очень высок, он устойчиво работает при переменных нагрузках.
- Просто регулировать частоту вращения.
К недостаткам коллекторного двигателя стоит отнести щеточный узел, из-за которого работа сопровождается шумом, искрением и радиопомехами.
Двигатели постоянного тока – это уникальные электрические машины, находящие применение повсеместно. Они работают в системах охлаждения компьютеров, приводят в движение электровозы, ледоколы и подводные лодки.