Электрический двигатель: виды и характеристики

Электрический двигатель: виды и характеристики

Одним из наиболее эффективных способов преобразования природных энергий является вращение. Используя его с незапамятных времен, Человечество сумело поставить себе на службу, например, ветер и текущую воду. В середине XIX века, когда был изобретен первый электродвигатель постоянного тока, пришел черед и электричества. О том, что такое электродвигатель и как он работает, пойдет речь в этой статье.

Содержимое

Физическая сущность электродвигателя

Это машина, вал которой вращается в результате взаимодействия постоянных или переменных магнитных полей. Классификация электродвигателей напрямую зависит от типа тока, который течет по его обмоткам. Они бывают:

  • постоянными;
  • переменными.

Это одно из наиболее эффективных устройств среди всех, которые были созданы за тысячелетия развития цивилизации: КПД электродвигателя достигает 99 процентов. Обладает он и еще одним, чрезвычайно полезным свойством: из потребителя электроэнергии может стать ее производителем.

Двигатели постоянного тока

Майкл Фарадей, английский физик, официальный изобретатель электрической машины постоянного тока, нашел практическое применение эффекту отталкивания одноименных полюсов магнита, который известен даже младшим школьникам. Он выяснил, что если согнутый в виде рамки проводник, по которому течет постоянный ток, поместить магнитное поле, то он стремится  повернуться так, чтобы одноименные полюса совпали.

Диск ФарадеяВообще-то, гениальный англичанин создавал негальванический источник постоянного тока. Он состоял из неподвижного магнита U-образной формы, между полюсами которого находился край бронзового диска, вращаемого вручную. К поверхности диска прислонен проводник – так, чтобы он мог скользить по ней. Его подключили к плюсовой клемме. Во время вращения диска между плюсовой клеммой и землей измерялась ЭДС величиной в десяток вольт. Одновременно было замечено, что если подать на плюсовую клемму напряжение извне, то диск делал половину оборота самостоятельно. Последовательная же смена полюсов приводила его в движение.

Позже было установлено, что диск можно заменить на несколько витков токопроводящего материала. А чтобы получить непрерывное вращение, в устройство электродвигателя такого типа надо ввести особый элемент – коллектор. Это медное кольцо, разделенное на две половинки диэлектриком. По нему скользят концы питающих проводников, которые назвали щетками. Каждая из половинок этого кольца соединена с обмоткой, являющейся самостоятельным электромагнитом со своим полюсом. В момент поворота коллектора происходит смена полюсов, что и провоцирует непрерывное вращение.

Подвижный элемент двигателя постоянного тока получил название ротора или якоря. А неподвижный – статора. В последующем эту терминологию распространили и на машины переменного тока.

При малых мощностях было достаточно устанавливать постоянный магнит. Однако для ее увеличения необходима его замена на несколько независимых электромагнитов – катушек, подключенных к источнику постоянного тока. Поскольку именно она является причиной вращения ротора и вала двигателя, ее назвали обмоткой возбуждения. Это потребовало увеличить и количество обмоток (полюсов) на якоре и, как следствие, разбить кольцо коллектора не на два, а на гораздо большее количество токопроводящих участков.

Обмотку возбуждения можно подключить и параллельно обмотке якоря, и последовательно с ней. Поэтому электродвигатели постоянного тока бывают двух типов:

  1. С параллельным возбуждением. Можно регулировать частоту вращения. Используется для привода станков, требующих постоянства скорости вращения.
  2. С последовательным возбуждением. Регулируется момент вращения (мощность). Используется в тяговых приводах.

Двигатель постоянного тока

Достоинством электрических машин этого типа является то, что ими очень просто управлять: для изменения скорости вращения достаточно изменить силу тока в цепи якоря или статора. Реверс электродвигателя осуществляется переключением полюсов питающего напряжения. Кроме того, из них наиболее просто можно сделать генератор, для этого не потребуется никаких конструктивных переделок, все выводы обмоток уже имеются.

К недостаткам стоит отнести большой вес и сложность машины, поскольку требуется устройство обмоток и на статоре, и на роторе. Однако с этим мирятся, поскольку вращающий момент двигателя постоянного тока наиболее высок, как и его КПД. Это объясняется тем, что магнитные потоки вращаются практически синхронно, с очень малым отставанием друг от друга.

Синхронные электрические машины чаще всего используются в качестве тяговых: на транспорте, крановые электродвигатели. Они безразличны к переменным нагрузкам и даже приветствуют реверсирование. Самый мощный электродвигатель постоянного тока приводит в движение атомный ледокол «Арктика».

Двигатели переменного тока

Изменение направления движения заряженных частиц позволяет получить, при соблюдении условия сдвига фаз, вращающееся магнитное поле. На нем основан принцип действия электродвигателя переменного тока. Его конструкция как бы вывернута наизнанку по отношению к машинам постоянного тока: питающее напряжение подается не на коллектор якоря, а на статорную обмотку.

Из-за механической и электрической инерционности якорь трогается с места не сразу, а спустя некоторое время (субъективно оно незаметно) и как бы пытается догнать магнитное поле в статорной обмотке. Рассогласование фаз достигает 18 градусов, поэтому такие электрические машины называются асинхронными, а их КПД ниже (оно не бывает более 85 процентов), чем синхронных.

Асинхронный электрический двигатель

По типу конструкции якоря асинхронные двигатели бывают двух типов:

  1. С короткозамкнутой обмоткой. Она состоит из двух колец и соединяющих их медных проводников. По форме напоминает «беличье колесо». Благодаря простоте применяется наиболее широко, однако в момент начала движения вала провоцирует короткое замыкание, из-за чего пусковые токи выше номинальных в два-три раза.
  2. С фазной обмоткой. Три независимых катушки, соединенных звездой, их концы припаяны к сплошным кольцам на конце вала. Используется в электродвигателях большой мощности, когда требуется плавный пуск с минимальным падением напряжения. По мере разгона вала напряжение на якоре снижают.

Машины переменного тока проще и легче, они хорошо выдерживают критические нагрузки на валу, но не лишены недостатков:

    • сложно регулировать частоту вращения, для этого надо в цепь питания включать преобразователи частоты;
    • лучше всего работают в режиме максимальных нагрузок, в режиме холостого хода снижают КПД;
    • зависят от качества питающего напряжения.

Питание асинхронных двигателей

Первые практические опыты применения многофазных токов осуществлялись изобретателем Николой Тесла, он создал генератор с двумя обмотками на статоре, расположенными под углом в 900 друг к другу. Более стабильные результаты по току и напряжению дал генератор трехфазный, который был изобретен русским инженером М.О. Доливо-Добровольским. В нем статорные обмотки сдвинуты на 1200.

Сдвиг фаз на 90 или 120 градусов порождает вращающееся магнитное поле без дополнительных конструкторских ухищрений. Если же машину переменного тока надо питать от однофазной сети, то его создают принудительно. Для этого в клеммной коробке трехфазного двигателя шесть выводов обмоток соединяют по схеме «треугольник», а между двумя любыми входными зажимами устанавливают электролитический конденсатор большой мощности, обеспечивающий нужный угол смещения фаз. Изменение скорости вращения невозможно. Для реверсирования необходимо переподключить реактивную нагрузку.

Однофазные двигатели, имеющие две последовательно включенные статорные обмотки, без включения между ними реактивной нагрузки так же не работают. Если при включении двигатель только «мычит», немедленно обесточьте его и проверьте исправность цепи конденсатора, иначе вы рискуете сжечь обмотки большими пусковыми токами. Управление ими невозможно.

Гибридные конструкции

Сложность управления двигателями переменного тока подвигла инженеров-электриков на создание гибридных конструкций. Это так называемые синхронные машины, в которых ротор движется, не отставая от вращающегося магнитного поля.

Трехфазные синхронные машины

Статор состоит из трех обмоток со сдвигом в 1200. На них подается трехфазное переменное напряжение. Ротор имеет несколько обмоток, но их концы выведены на токосъемный коллектор, поделенный диэлектрическими прокладками на сектора. Посредством графитовых щеток на него подается постоянное напряжение. Для постоянного магнита суммарный сдвиг фаз в 3600 – это тот же ноль. Чтобы вал электродвигателя начал вращаться, его надо подтолкнуть – вручную, механическим (ДВС) или электрическим устройством. После набора номинальных оборотов инициирующее устройство останавливают. В итоге машина питается широко распространенным переменным, но имеет положительные свойства двигателя постоянного тока: стабильность оборотов, высокий КПД и, главное, возможность регулирования частоты вращения в широких пределах.

Синхронный двигатель

Однофазные синхронные машины

Это так называемый универсальный коллекторный двигатель. По факту – та же машина постоянного тока, но питающаяся от бытовой сети переменного. Две статорных обмотки включены последовательно с якорем посредством графитовых щеток, поэтому полюса меняются одновременно и вращающий момент не меняет направления. Двигатель подключается к бытовой сети напрямую, не вызывает падения напряжения при запуске и не требует времени на разгон для достижения номинальной мощности. Он обладает мягкой нагрузочной характеристикой, поддается регулировке и по частоте, и направлению вращения. Используется в ручном электрифицированном рабочем инструменте, стиральных машинах.

Подключение двигателя 380В на 220В

Нагрузочное поведение электродвигателей

Номинальная мощность электродвигателя обычно указывается на шильдике, прикрепленном к его корпусу. Однако нагрузочное поведение машин постоянного и переменного тока существенно разнится. Так же, как и способ достижения паспортных значений этого параметра.

Двигатели постоянного тока номинальные обороты набирают плавно. Величина вращающего момента на их валу зависит, прежде всего, от напряженности магнитного поля. Поэтому для повышения отдачи увеличивают количество витков в катушках статора и ротора. Кроме того, регулировать частоту вращения можно, изменяя величину напряжения или тока в обмотке возбуждения.

Асинхронные машины переменного тока выходят на номинальные обороты резко, нередко за доли секунды, и стараются держаться на них независимо от уровня нагрузки, увеличивая силу тока в обмотках. Быстроходные, развивающие большое количество оборотов, используются в малонагруженных, но производительных приводах. Количество витков в обмотках у них большое, а сечение провода невелико, поэтому из-за большого удельного сопротивления по нему течет ток малой силы. Катушки же тихоходных, тяговых, наматываются проводом большого сечения, по которым течет ток большой силы.

Знание того, как работает электродвигатель, поможет вам сделать правильный выбор при создании приводов различного назначения. Однако и простое знакомство с устройством, коэффициент полезного действия которого близок к ста процентам, будет весьма полезным для общего развития.